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Subject 

Usage of Genetic Algorithms  

Genetic Algorithms (GAs) are already being used in everyday tools like scheduling software to optimize the 

usage of resources
1
 and in computer games to balance the game to fit the player’s style and expertise 

level.
2
 GAs have even been successfully applied to the field of designing analog circuits

3
 and researchers at 

Georgia Tech Center for Music Technology have succeed in creating robots that can analyze and play 

improvised music real-time along with humans who are playing other instruments.
4
  

Reason for selecting the subject. 

Most of the programming done today has a very specific job to solve and often breaks if presented with 

parameters outside of the predefined solution scope. The idea of programming in a way that the code is 

able to evaluate a solution (or itself), could very possible be the future of programming and also one of the 

basic steps towards artificial intelligence and Singularity
5
. 

This “Brave New World” of programming was our interest point and introduction to the subject. 

But if GAs holds such potential, why is it not more commonly used? This is one of the questions which we 

will try to look more closely into in this report with the basis in our own implementation of Genetic 

Algorithms – The Bin Packing Problem (BBP). 

Applying GAs to The Bin Packing Problem. 

The Bin Packing Problem revolves around the issue of fitting a number of boxes into a larger bin. The 

problem is easily defined but very hard to solve. In math terms the problem is called NP-Hard
6
, which 

means that given a set of boxes and a bin, it is very hard to answer questions like: what is the best way of 

packing the bin, what an optimal solution would be and how good it would be.  The only way of finding the 

optimal solution is to use the brute force technique of trying every possible packing, which often will take 

too much time or being close to impossible to do because of the number of possible combinations. 

This is where GAs come in: By improving upon a solution over and over again, in the same way as evolution 

has allow us to evolve from single cell creatures to what we are today, GAs will gradually move towards a 

better and better solution. 

The complexity increases drastically the more factors you have to take into consideration when doing an 

implementation like the BBP; therefore we have chosen to do a simplified version of the BPP where we will 

only be working in two dimensions and a single bin. The goal is not to find an optimal solution, but to find 

good approximated solutions within a short time (minutes) using a GA. 

                                                           
1
 http://www.orchestrate-plan.com/orchestrate_optimizer.htm 

2
 Cole , Nicholas, and Louis, Sushil J. and Miles, Chris “Using a Genetic Algorithm to Tune First-Person Shooter Bots” 

2004 - University of Navada 
3
 Johson , R. Colin “Genetic program auto-designs anlog circuits” – Issue 904, 2003 - Publisher: eeTimes 

4
 http://blog.wired.com/music/2008/11/no-way-robot-ja.html 

5
 http://en.wikipedia.org/wiki/Technological_singularity 

6
 Non-deterministic Polynomial time hard (http://en.wikipedia.org/wiki/NP-hard) 
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Boundaries. 

There are many closely related programming styles that resemble and often contain GAs such as: Genetic 

programming (GP), Evolutionary programming, Evolution strategy, etc. Common for them all are that they 

relay on the principals of biological evolution to optimize, approximate or handle problems. It would be out 

of the scope of this report to explain or even try to draw parallels between these and GAs, but in certain 

areas of the report there can be elements of these that we will refer to. 

GAs also embodies a wide variety of genetic operators, we described some of the most common ones in 

the introduction to Genetic Algorithms, but we will not be including or explaining other types then the ones 

used in our implementation. 

Method, structure and sources.  

Using the model illustrated in figure 1
7
, we aim to 

build upon our existing knowledge about software 

development to increase our understanding of 

GAs and how it can be applied. In this report the 

Research Domain is GAs and the methodologies 

are a combination of prototyping (our 

implementation), discussion/observation 

(literature describing real world usage of GA) and 

test results (output from our implementation). 

The implementation will be central focal point of 

the report, it will be used both to test the idea 

behind GAs and try to determine if the usefulness 

of GAs as a conventional programming tool. 

We will begin with a introduction to GAs, then we will 

discuss the technical and business related issues concerning the use of genetic algorithms, followed by our 

implementation of the bin packing problem. Based on the findings from our implementation we will try to 

draw a conclusion about the usefulness of GAs for this type of problem.  

The majority of the sources that we reference are published books, university papers or articles in well 

known and established magazines, so the validity of these is to the best of your knowledge of a standard 

that can not be drawn into question.  

The links we reference are selected based on credibility, this is done by evaluating the article itself and 

insuring that the link is referenced from more then one source, we also verify that the information on the 

internet page can be found at other sources. In some cases we use Wikipedia as a source, we are aware of 

the fact that Wikipedia is an open source encyclopedia that everyone can edit and that this raises a 

question of it credibility, but the primary use of Wikipedia in this report is of technical or mathematical 

heavy articles that is based on derived facts rather then subjective evaluation.  

                                                           
7
 Nunamaker, Jay F. “Journal of Management Information Systems” 1991, page 92 

Figure 1 – A framework of Research 
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Introduction to Genetic Algorithms. 

Genetic algorithms are part of a programming discipline which uses the principals of evolution to find an 

exact or approximated solution to a problem. GAs are a direct metaphor for having code react and evolve 

in the same way as biological evolution or trying to mimic this. GAs are search based and incorporates 

natural selection to refine a solution over several generations/iterations. First suggested by Alan Turing in 

1948 and pioneered by John Holland in the early 70s,
8
 it has since been widely studied and used to produce 

results capable of matching, and in few cases exceed, those of a more conventional approach.
9
 

The basic ideas behind GAs are: There is a genetic pool that potentially contains a solution, or a better 

solution, to a given problem. The solutions are represented as a chromosome, which consists of one or 

more genes. Each gene represents an action that needs to be executed; the actions can be everything from 

mathematical expressions, orderings and transformations to whatever can be applied to the problem at 

hand. The potential solutions are found by taking an initial random population of chromosomes as possible 

solutions, then applying genetic operators such as mutation and crossover to evolve them over numerous 

generations. 

Each generation normally contains more then 

one chromosome (solution), a fitness function 

is then applied to each chromosome to 

evaluate it and decide if it is a better solution. 

Once evaluated a new population of 

chromosomes are generated from the 

previous batch and the genetic operators are 

applied. This process is repeated until an 

acceptable solution is found or the maximum 

number of generations has been reached. The 

reason for restricting the number of iterations 

can be many; it can be because of time 

restrictions, it can be for statistical reasons, 

etc. 

There are many different genetic operators, 

but the most common are: 

Selection – A selection of chromosomes from 

the current population based on randomness, 

but often includes a fitness function to insure 

that the best genes are more likely to survive. 

                                                           
8
 Poli , Riccardo and Langdon, William B. and McPhee, Nicholas Freitag. “A Field Guide to Genetic Programming” 2006 

- Publisher: Lulu.com - Page 141 
9
 http://www.genetic-programming.com/humancompetitive.html 

Figure 2 - the normal flow for genetic algorithms. 
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Mutation – Mutation alters one or more of the gene values in a chromosome from its initial state. The 

importance of this is that is helps to insure diversity in the population, which else could become too similar 

and causing the evolution to stop. 

Crossover – Crossover combines two chromosomes to produce one or two new chromosomes, which may 

be new and better chromosomes. 

GAs are especially useful when working with search and optimization, where the problem is easily defined 

and the number of possible solutions exceed what is reasonable to test via brut force techniques within a 

acceptable time span. 

One of the most commonly used problems when discussing GA is The travelling sales man problem (TSP)
10

, 

which consists of the problem of a sales man who needs to visit a number of cities. How does he order the 

visits to the cities so he only visits each city once, but also take the shorts possible route? We will 

throughout this report be referring to the TSP as the common sample problem. The reason this problem fit 

the boundaries of GA so well is because it works with a search based criteria that otherwise would be hard 

to express using traditional programming techniques, or which would require that you have to go through 

all possible solutions. Using GAs you would be able to quickly get a solution that in most cases would be 

sufficient, but it is important to remember that GAs in most cases only give approximated solutions and not 

the optimal one(s). 

 

                                                           
10

 Hauot , Randy L. and Haupt, Sue Ellen “Practical Genetic Algorithms” 2004 - Publisher: Wiley-Interscience - Page 124 
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Technical issues. 

The complexity of the BPP is of such a character that using a GA is a good alternative to the traditional 

brute force search, but the complexity is not only in the problem to be solved it can also be in the solution 

found by the GA.  

Complexity. 

The complexity of the BPP is mind buckling. When the number of packages are low the problem is fairly 

simple, but the complexity of the problem grows exponential with the number of packages. For instance 

the numbers of possible combinations for 15 packages that can be oriented in 2 directions are 

062400042849873692!15)21()214()215( 15 =⋅=⋅⋅⋅⋅ K . 

At first we have 15 packages to select from and place in the bin in 2 orientations ( 215 ⋅ ), then we 14 

packages left to select from and place in the bin in 2 orientations ( 214 ⋅ ) and so on. If we did the same 

calculations in 3d the number of possible combinations would be 

8000485105479661484885256!15)61()614()615( 15 =⋅=⋅⋅⋅⋅ K

 

or
153  times the number of combinations for the 2d version. This shows without a doubt that the 

complexity of the BPP is huge and also the reason that we only work in 2d on our implementation. 

 

CPU time. 

A brute force test on this “small” bin packaging problem using only 15 packages in 2d, would require a 

computer capable of checking a million packing combinations a second and it would still take more than 10 

years to complete. But since GAs uses evolution to improve the solution, it will rather quickly start to 

improve and become increasingly better within a short time (a few minutes), even with a relatively small 

computer. 

Time required to analyze the results. 

GAs will often give solutions that are very complex, so depending on the usage you will often have to do 

some analysis of the solutions to make sure they perform the desired task. Some GAs generates solutions 

which will perform, but also contains “garbage” information
11

 which have no impact on the solution, so 

removing this redundant code would improve performance. This is also seen in real life where as much as 

95% of the human genome is junk DNA
12

. 

Lack of conversion 

The GA does not necessarily give a solution that will work. You have to design your fitness function with 

great care, as this is essentially the only task you are giving the GA to solve, or in other terms you only way 

                                                           
11

 Ferreira, Cândida “Gene Expression Programming: A New Adaptive - Algorithm for Solving Problems” Universidade 

dos Açores, Portugal 
12

 http://en.wikipedia.org/wiki/Junk_DNA 
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of evaluation a possible solution. 

The GA will try to solve the task with the tools provided, like selection, mutation and crossover, but this in 

certain cases is not enough to ensure the GA will converge. Sometimes, especially if there are many factors 

that it needs to take into consideration, the GAs will run into an evolutionary dead-end and stop evolving.  

Lack of understandable patterns. 

The complexity of some GA solutions makes it a daunting task to understand the patterns within it. As in 

the example of a program evolved by Jaime J. Fernandez to pick up signals from 3 electrodes on a person’s 

wrist
13

, to show which way the person moved his/her thumb, the solution was one long line of hundreds of 

nested “if statements”. It worked perfectly but the code was to complex to give any indication on why it 

worked. 

Errors in the genes 

In contrast to biological evolution where errors in the genes might not have an effect, in GAs errors will 

often be fatal for the program because of the way a computer works. So even though they build on the 

same principals, there are very important areas where they differ and the idea behind Genetic 

Programming will properly not be fully achieved before the computer itself is able to adapt in the same way 

as the code. 

Sub conclusion A. 

GAs are good alternatives to brute force when you take into account the limitations of the GAs. You should 

always ensure the GAs only does what it is suppose to do and it will often even be an good idea to put 

restrictions on the output of the GA. E.g. if you make a program to control an artificial arm, you want to 

make sure that the arm in no way, can hurt the person it is attached to. 

GAs can solve most problems, especially if they are search or optimization based, you just have to convert 

the problem into a structure a GA can be applied to and give it at a good goal in the form of a fitness 

function. But you always need to remember that it is a computer that is handling the problem, and 

computers are build on the principals of yes and no – 0 and 1 – on and off. So problems are handled digital 

not analog, this can sometimes pose a problem for a theory that is based on living cells. 

                                                           
13

 Gibbs , W. Wayt “Programming with Primordial Ooze” – October, 1996 - Publisher: Scientific American 
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Business issues. 

The BPP is a problem that many companies around the world encounter on a daily basis. If they send a 

large number of packages, then a program for optimizing that packing could be of great financial benefit for 

them, especially if the cost of transportation is high. 

Seldom gives a final solution, but only a refined guess. 

An important factor in using GAs is that they almost never give the optimal solution to a problem, but what 

they do give is an approximated solution. If we look at one of the results from our BPP implementation –

Figure 3– we clearly see that the waste percentage slowly drops with each generation (the unit for waste is 

1 = 100%). After 5000 generations the waste factor is around 8% of the bin. 

 

Figure 3 - one run of our BPP 

Depending on the problem type, the approximation may vary and in many cases the solution is only 

acceptable if it is within a certain range.  

Often a fragile solution, only works for one specific problem. 

A problem that can be of great importance depending on the type of problem you are working with, is the 

fragility of the solutions that a GA comes up with. If you change any part of the solution, then you need to 

run the program again, and it is very unlikely that it will come up with a solution that resembles the original 

solution. Again, if we look at the BPP, if the dimensions of any of the boxes are changed, then it would 

require a new run, which is very unlikely to look anything like the first one. 

Often needs to be refined. 

GAs are not intelligent and work to some extent by the trail and error concept, so what may be easily 

spotted by a human might be impossible for GAs. Figure 4 below show an example of a packing done by our 
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implementation of the BBP, it is easy to see that by moving the last small box to one of the spaces above, 

the packing would be much more efficient. 

 

Figure 4 – human refinement of a solution 

This human touch is often very important for successful usage of GAs and computer programs in general. In 

the famous rematch between Gary Kasparov and IBM’s Deep Blue chess computer in 1997, they where tied 

after the first 4 matches, but then something happened and Deep Blue suddenly started to play more 

intelligently according to Kasparov. As part of the rules for the competition, IBM was allowed to adjust the 

program between matches and by doing this they achieved the first victory in a competition over 

Kasparov
14

.  

Some would argue that the need for this human touch is just shortcomings in the programming, that since 

it did not take these factors into account the program was build in the wrong way. 

Development time 

Time is often a factor in developing programs, in particular when working with GAs. As discussed in the 

“Technical Issues”, the complexity in both developing the program and in understanding the solution can 

be of such a character that the time spend on this becomes too high. This is especially true for GAs if there 

to many factors that it needs to take into consideration. 

Sub conclusion B. 

GAs holds great potential for solving complex search based problems, this is not only confined to the BPP 

but everywhere a approximated solution is acceptable. Especially in areas of resource and scheduling 

planning could the usage of GAs be used with great success. But for many years to come there will be a 

need for the human touch, this small push in the right direction, to insure the solution performers to the 

best of its capabilities. 

                                                           
14

 http://en.wikipedia.org/wiki/Kasparov#Deep_Blue.2C_1997 
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Our implementation 

Our implementation is a GA written in Java in an effort to solve the BPP.  

Reason for doing the implementation 

We did the implementation to show that it is possible to obtain knowledge to implement a GA in a short 

amount of time and without previous programming experience within the area. The idea behind GA is very 

simple but powerful and this is what we wanted to show.  

Input for the BPP 

A list, containing information about the height and width of the boxes. 

Information about the bin’s dimensions. 

Constraints on the BPP 

No package must be wider or taller, than the width of the bin. 

The generation size has to be larger than 2 

Number of generation has to be larger than 1 

Expected output from the BPP 

The output should as minimum, be a list of the packages in the order to be packed, the resulting 

percentage waste and a picture to show the packaging. 

The Architecture15 

The Gene Class holds information about a single box, a floating point number is used to determine its 

packaging order in the bin, and a Boolean to indicate if the box should be rotated or not. 

Class Chromosome contains a list of Genes from the gene class. A chromosome describes an entire 

packaging of a bin. 

The Evolver class uses a list of chromosomes, to represent an entire generation. These are evolved into a 

new generation by the evolution method within the Evolver class. This is done until an acceptable solution 

is found or the maximum generations have been reached.  

                                                           
15

 A UML diagram showing the layout of the implementation can be found on the CD. 
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Evolver() 

The call to the Evolver method, Figure 5, 

starts the GA on the search for the best 

packing of the boxes given. 

First the total area of the boxes are 

calculated, this value is later used in the 

fitness calculation. Then a set of total 

random chromosomes are generated. 

The chromosomes are then prepared for 

the fitness method by inserting the box 

numbers in the chromosomes in order. 

The fitness method is then called which 

calculates and sets the fitness of the 

chromosome. SortChromosomes are 

called to sort all the chromosomes so the 

best chromosomes are first in the list. 

Finally the Evolution method is called, this 

method generates a new generation from 

the current generation of chromosomes. 

 

Figure 5 – Evolver flowchart 

CalcFitness() 

The CalcFitness method calculates the 

fitness of a chromosome and set the fitness 

field of that chromosome. 

First a copy is made of the chromosome, as 

the genes in the chromosome are sorted in 

this method. Then the genes in the copy are 

sorted giving the packing order. 

Then the chromosome is passed to the bin 

packing method. This method does the 

actual evaluation of the packing described 

in the chromosome. The result is returned 

and stored in the original chromosome. 

 

Figure 6 – CalcFitness flowchart 
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Evolution() 

The Evolution is the method that does the 

actual evolution from generation to 

generation. First a new (empty) list of 

chromosomes is made. Then two 

chromosomes are selected from the old 

generation and they are combined into two 

new chromosomes by crossover, mutation 

and geneswap. This is done until the new 

generation holds the same number of 

chromosomes as the old generation. 

The selection of the chromosomes from the 

old generation is done so the chromosomes 

with the best fitness are more likely to be 

selected than the chromosomes with a poor 

fitness. The selection also ensures not to 

select the same two chromosomes for 

mating. 

A pair of chromosomes can be subjected to 

the 3 different kinds of operations. But as the 

operators are selected by chance, a pair of 

chromosomes can be subjected to everything 

from zero to all three operators.  

Figure 7 – Evolution Flowchart 
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The genetic operators 

Selection 

The selection of the chromosomes from the old generation to be mated, are weighted so the better the 

fitness the more likely they are to be selected for mating.  In Figure 8 shows the weighting function used, 

the function are made so the top 25% of the chromosomes are as likely to be selected as the remaining 

75% 

Selection

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 25 50 75 100

Chromosome

C
h

o
ic

e

 

Figure 8 – Selection 

The weighting is made from a combination, of the chromosomes location in the sorted list and a 

mathematical function selected purely to give the desired function in Figure 8. 
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Mutation  

The mutation operation takes a chromosome and selects a random gene within it, and then selects one of 

the two features represented in the gene to be modified. Once one of the two features are selected, it is 

overwritten by a random value.  

 

Figure 9 - The mutate method 

 

 

In the example shown, the selected feature is the value representing the 

location of box 3. The value are changed from 0.3302 to 0.7723, this changes 

the packaging so box 3 now comes before box 4. 

The ordering of the packages are by the mutation method changed from 

5,3,4,1,2 to 5,4,3,1,2 as shown, so most of the ordering are kept, which is 

what we want from a mutation method. 

The mutation could also have been to the feature representing how the 

rotating of one of the boxes should be. The ordering would then be the same, 

but the box (gene) could be rotated. 
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Crossover 

The crossover method should combine two chromosomes by taking parts of one and swapping it with 

another. It should still keeping as much information from the two as possible. 

 

Figure 10 – The crossover method 

The example in Figure 10 shows how the crossover method works on our chromosomes.  

The first chromosome has after the crossover swapped gene 4 and 5, and the second chromosome has 

permutated gene 2,4,5 into 5,2,4. So as expected of a crossover function, some of the information hold in 

the chromosome is preserved.  

How does our GA work 

The GA, performs two tasks. Find the order in which to place packages in the bin, and in what orientation. 

The bin packaging routine only need these two information’s together with a list of packages, to do an 

evaluation of the packaging. The packaging routine is explained below in Figure 12. 

A list of packages, in the order and orientation to be packed are shown in Figure 11. 

 

Figure 11 – List of boxes 
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Figure 12 – Packing the bin 

The cost for each chromosome is calculated as the space wasted in the bin, after all the packages are 

placed in the bin. 

xy

a

⋅
−= 1cost  

Where y is the highest point of the top most package in the bin, x is the bin width, a is the total area of the 

packages. So an optimal solution would have a cost of zero, as the area of the bin is equal to the area of the 

boxes. 

The final packing is shown in Figure 13, we find a cost of 0,348 from the values 2150,60,55 === axy . 

This means that 34,8% of the space in the bin is wasted. 

 

Figure 13 – A packed bin 
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The travelling salesman problem, a different approach. 

TSP is the problem of a salesman who needs to find the shortest route between a number of cities. 

When representing the route as an ordered list of cities it gives a problem when doing the crossover 

function. The problem is that: if you use an ordinary crossover function you will end up with the same city 

represented more than once, or not at all in the chromosome as shown in Figure 14. 

 

Figure 14 – TSP crossover problem 

There are ways to avoid this. In the book Practical Genetic Algorithms, they show multiple ways of changing 

the crossover function to circumvent the problem. We did not want to change the algorithm so instead we 

changed the mark up of our chromosome so we could use the “standard” crossover function. The way we 

have solve it has to the best of our knowledge never been done before. Since we were forced to begin on 

parts of the implementation before reading all of the literature, it resulted in us using float values to 

representing the order of the packages.  

Known problems/weaknesses with our implementation. 

Giving the algorithm a lot of long upright packages, will result in a bad bin packing as the GA will find it 

difficult to find good solutions. This is because it would require a lot of packages being rotated in the same 

generation and the GA (as it is) can only rotate one package in a chromosome at the time. The probability 

that these rotations would survive from generation to generation and accumulate into a whole row of 

packages being rotated, are very small. 
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Output 

The output from our implementation is a list containing two columns, one with the best fitness of the 

current generation, and one with the average of the fitness of all the chromosomes  in that generation e.g. 

Best Fitness Average Fitness 

0.16667 0.38528 

0.16667 0.36524 

0.16667 0.36423 

0.16667 0.36213 

. . 

. . 

and so on.  

 

Notice that the best fitness rarely changes compared to the average fitness’s. This is do to the fact that 

many generations can go by, without the GA finding a better chromosome than the one currently evaluated 

to be the best. This is only true as long as Elitism is turned on. 

This data can easily be converted to a graph as this: 

Single run of the GA
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Figure 15 – Graph of a single run of the GA 
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You will always get a summery of how the resulting packaging is done and a graphics representation of the 

packed bin (Figure 16 - A packed bin). 

Fitness = 4,76%

16 true 

8 false 

17 false 

15 true 

7 true 

4 false 

11 true 

10 false 

9 true 

5 false 

0 true 

1 true 

2 false 

3 false 

6 false 

12 false 

14 false 

13 false 

First column is the package, the second column tells if the package is to be rotated or not. 

 

Suggestions to improve the GA. 

1. Insert random chromosomes every generation would result in a bigger search area, allowing the GA 

to more quickly find solutions outside the search area defined by the first chromosome selection. 

Though some would argue it would just result in a more random search.  

2. Extending elitism to copy more than the best gene, for instance top 5 or 10. This, we believe would 

give a faster conversion. But would also lower the diversity in the collection of the chromosomes. 

3. Evaluate multiple generations and select the best generation NOT the best individual. This could 

lead to a better chance of finding an optimal solution, as it would make the average fitness in the 

collection of chromosomes better over generations. 

4. Remove identical chromosomes. This would ensure that we do not end up with a lot of identical 

chromosomes, and thereby loosing diversity in the chromosomes. 

Figure 16 - A packed bin 
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GA is not random search or brute force. 

If you take the BPP with 15 packages as an example, and compare the chance of finding a better solution 

with a random search compared to GA, you will find that the GA will be better. 

Let’s say we use a generation size of 100 and run the GA for 5000 generations this would be a total of 

500.000 random ways of packing the bin. And out of the 4284987369062400, it is only about % 101,167 -8⋅  

or close to 0%. The interesting thing is that with GAs you do not hit more, but the ones you do hit will be 

evaluated and the best ones will be improved upon. 

Testing and Results. 

We will try to answer some obvious questions that arose while doing the implementation. We will do this 

by running our GA with different settings of the parameters for the GA, and with different packaging files. 

1. Will the GA converge? 

We did a few runs with a random set of boxes and got this graph 
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Figure 17 - Conversion 

This shows without a doubt that the GA do converge towards zero, as expected. We do of cause 

not expect it to ever become zero. Just that it gets lower and lower over generations. 
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2. How do the different parameters affect the performance of the GA (not speed)? 

We did some runs where we made graphs with an average over 50 run for each series. We used the 

following basic settings.  

 

BinWidth = 100 

GenerationSize = 100 

NumberOfGenerations = 5000 

CrossoverRate = 0.850 

MutationRate = 0.375 

GeneSwapRate = 0.25 

 

We then varied the three parameters one at a time, crossover rate, mutation rate and swap rate in 

steps of 25% and got the following three 

graphs.

Mutations rate

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Generations

w
a

st
e

Rate = 0,00

Rate = 0,25

Rate = 0,50

Rate = 0,75

Rate = 1,00

 

Figure 18 - Variation of mutation rate 
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Figure 19 - Variation of swap rate 
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Figure 20 - Variation of crossover rate 
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To have the optimal parameter setting we can from these graphs see, that the mutation rate have 

to be between 0%-25%, the swap rate around 25% (0%-50%) and the cross over between 75%-

100%. This is not necessarily the whole true as we only test in steps of 25% any setting in between 

could be better, but it is a good estimate. 

So the setting from this point forward is  

BinWidth = 100 

GenerationSize = 100 

NumberOfGenerations = 25000 

CrossoverRate = 0.950 

MutationRate = 0.020 

GeneSwapRate = 0.250 



26 

 

3. Will the GA be able to find the optimal solution, for the list of box we know is packable? 

We made a packable set of 18 boxes as show in Figure 22 - Packable set of boxes. 

We did a graph, Figure 21 - Packable set, with an average of 50 runs which show that the GA did 

NOT find the optimal solution. This was not expected. We had hoped that the GA in a short amount 

of time would find the solution to the 18 package problem given. 
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Figure 21 - Packable set 

 

Figure 22 - Packable set of boxes 
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4. How will the GA handle a huge number of boxes to pack? 

A random set of 500 boxes was generated, and only a single run was made with the bin width of 

1000. The run took about 2 hours on an Intel® Core™2 Duo Processor 6600 @ 2,40GHz with 2,00GB 

of ram. The implementation only ran on one core, as multithreading have not been implemented. 

The result shown in Figure 23 – Run with a large set of boxes, was as would be expected. The best 

fitness of each generation changes more often as a result of there being a lot more ways to better 

the packaging.  
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Figure 23 – Run with a large set of boxes 
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Discussion / Evaluation 

Writing the program for the BPP helped us understand some of the problems when implementing a GA. 

The bin packing routine, which does the actual packing and calculation of the fitness, was by far the biggest 

challenge. It was hard to figure out a simple way to do a packing that was unambiguous and ensured the 

packages was not overlapping. The packaging is not done in a way that ensures that there are no “holes” in 

the bin, it is done in a way that insures that we actually get a solution. With more time and CPU time, we 

would have been able to figure out what combination of parameters which would be optimal, but every run 

(contains an average of 100 runs) takes about 30 minutes. 

So where can GAs be used? If we look at the technical and business related issues, then the conclusion 

must be that when there is a large search area and an approximated solution is acceptable, then there is 

the possibility that GAs can be applied with success. But this is also the weakness of GAs, since it is an 

approximated solution then you have no knowledge of how good a solution the program actually will 

present. You can put restrictions on it so that the result must be within a certain range, but this can quickly 

result in a program that has to run for too long to give an acceptable result.   

Even with the limited runs that we did, it is easy to see that there could be a business behind solutions like 

our BPP implementation. As mentioned under “Business issues”, if this can help a company to improve the 

packing just by a few percentages then this would most likely be of interest. But the nature of GAs does 

make it so, that you need to carefully evaluate the complexity of both the problem and the possible 

solutions upfront, to insure that you get results that you can actually use outside of the computer. 

If we try to take a more holistically look at the patterns in GAs, then we see that there actually is a 

resemblance to the way GAs works and the way we as humans sometimes acquire new knowledge. 

1. First we try to solve a problem. 

2. Then we evaluate the result by looking at what worked and what did not work. 

3. Then we form ideas about what could be done instead to improve the result and we try again. 

These three steps are in many ways very close to the cycle that is often being taught in development 

theories
16

, so the principle of GAs is actually closer to the way we think then the model behind normal 

procedural driven programming. But the problem is to apply this model to a computer that relies on 

different logic then the cognitive one that we use; this is also why a seemingly simple problem to express 

can be hard to write for a computer. 

Final conclusion 

By looking at what GAs do best, which is to iterative improve upon a result,  the conclusion must be that 

within search based problems sphere like the Bin Packing Problem and the Traveling Salesman Problem, 

there are few other tools that will be able to compete with GAs. There are often complex problems to solve 

                                                           
16

 http://en.wikipedia.org/wiki/Software_development_methodologies 
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both with doing the implementation but also with the result, but these should be solve able through 

control of input and size of the solution. 
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Glossary 

BBP: Bin Packing Problem. 

CPU: Central Processing Unit. 

GA : Genetic Algorithm. 

GP: Genetic programming 

NP-hard:  Non-deterministic Polynomial time hard 

TSP: Traveling Salesman Problem. 
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